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Abstract 
 

Many mechanical systems exhibit nonlinear movement and are subject to perturbations from a 

desired equilibrium state.  These perturbations can greatly reduce the efficiency of the systems. It 

is therefore desirous to analyze the asymptotic stabilizability of an equilibrium solution of 

nonlinear systems; an excellent method of performing these analyses is through study of 

Jacobian linearization’s and their properties.    

 

Two enlightening examples of nonlinear mechanical systems are the Simple Inverted 

Pendulum and the Inverted Pendulum on a Cart (PoC). These examples provide insight into both 

the feasibility and usability of Jacobian linearizations of nonlinear systems, as well as 

demonstrate the concepts of local stability, observability, controllability and detectability of 

linearized systems under varying parameters.  Some examples of constant disturbances and 

effects are considered.  The ultimate goal is to examine stabilizability, through both static and 

dynamic feedback controllers, of mechanical systems
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Chapter 1: Introduction 
 

Section 1.1: What is Feedback Control?   Why Study it? 
 

Any system, be it of mechanical, electrical or biological origins, is often subject to 

perturbations from a desired normal state.  Feedback control utilizes the current state of the 

system to determine an appropriate feedback to return the system to this desired state, i.e. to 

stabilize the system.  Compensating for unwanted perturbations is necessary to ensure proper 

functioning of a system; in many cases the margin of error for a system is very small.   

 

Perturbations can cause severe problems with a sensitive system.  In a radio antenna, for 

example, a few degrees off axis can result in the antenna pointing at the wrong section of sky, 

resulting in a complete lack of functionality.  Other mechanical systems such as bipedal robots 

and rockets also require feedback control in order to ensure optimal efficiency.  These 

mechanical systems all utilize the same fundamental control principles and techniques. In fact, 

bipedal locomotion and rockets are directly modeled off of inverted pendulum models.   

 

Feedback control methodologies are used to determine the current state of a mechanical 

system and induce a mechanical feedback that will return it to the desired state.  This paper will 

be dealing solely with feedback control and stability within mechanical systems.   
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The State Space representation of a mechanical system is a methodology of writing the 

system equations.   

 

Definition 1.1:   
The State Space Representation of a linear time invariant system is: 

 

(1.1) 
)()(

)()()(

tCxty

tButAx
dt

tdx

=

+=
 

 

In the future we will write
dt
dxx = .   In equations (1.1):  

• x(t) is the system state at time t.  In mechanical systems this usually refers to quantities like 

position and velocity.   This is where the name State Space originates.   

• A is an n x n matrix that determines the system dynamics in the absence of any inputs (u=0) 

•  B is an n x m matrix that determines the interaction between the inputs, u(t), and the system 

state x(t). 

• C is a p x n matrix that determines the interaction between x(t), the state space variables and 

y(t) the observable output. 
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Section 1.2: The Simple Inverted Pendulum and its Linearization 
  

Our first example is a simple inverted pendulum.  Imagine a rod with one end fixed in 

position, yet able to rotate in the vertical plane, so that the rod can swing freely 360 degrees.  The 

other end of the rod has a weight of mass m attached to it.   

 

Θ

Φ
m

Figure 1.1:  The Simple Inverted Pendulum 

 

This pendulum would naturally move to a stable equilibrium with the mass m resting at 

the bottom.  Any deviation from this stable equilibrium point could be measured by the angle Θ .    

 

We can also see that an upper vertical equilibrium point exists at .   Any 

deviations from this equilibrium are measured by the angle 

0    and  πΘ =Θ=

Φ .  We define .  Logically 

if the system starts at this vertical equilibrium any small change in initial condition will result in 

unstable motion.  We will prove this mathematically later. 

Φ+=  πΘ

 

This system equation is:  
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(1.2) u(t) Θ(t)  singl m(t)Θ ml2 =+  

 

If we choose units such that m = 1, l = 1 and g = 1, equation (1.2) then reduces to: 

 

(1.3)  u(t) Θ(t) sin(t)Θ =+

 

Note that in equation (1.3) the only nonlinear term is . If we can linearize this 

term, by taking a Taylor expansion and then dropping the higher order terms we end up with a 

linearized system.  However we are fundamentally interested in the stabilization of the nonlinear 

system around the equilibrium.  At first blush this would seem to pose a problem, however it is 

important to remember that in linearizing the system all we do is drop the higher order terms 

(H.O.T.s) from the nonlinear part of the system.  Since these H.O.T.s are dominated by the lower 

order terms within the immediate neighborhood of the equilibrium then within that small vicinity 

the behavior of the nonlinear system can be approximated by the behavior of the linearized 

system.   Furthermore within that immediate neighborhood any feedback control that stabilizes 

the linear system will also stabilize the nonlinear system.  Therefore it is acceptable to examine 

the linearized system to make calculations easier; this will be laid out in more mathematical 

detail later. 

Θ(t) sin

 

The first step to linearizing the system is to note that we defined .  Thus we can 

use a trigonometric identity to write: 

Φ+=  πΘ
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(1.4)   )sin(-  ))cos( sin( )cos( ) sin( ) sin( )in(s ΦπΦΦπΦπΘ =+=+=  

 

We then perform a Taylor series expansion on  )sin(Φ keeping only the linear terms. 

 

(1.5)   s.T.O.H )in(s +=ΦΦ  

 

Therefore ∆+=ΘΦ≈Θ 0-for    - )in( πs , where ∆  is defined as an arbitrarily small deviation.  

Then the linearized equation (1.3), about the upper equilibrium, is: 

 

(1.6)   u(t)- =ΦΦ

 

To find the State Space representation of this linearized system set .  Then 

solve for  and , in terms of x

Φ=Φ= 21  xand x

1x 2x 1 and x2.  We already know  explicitly, so all we have to 

solve for is .   

1x

2x

 

(1.7)  )t(uxx 12 +=

 

Translating this into a State Space representation we get: 
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(1.8)   u(t) 
1
0

 x 
01
10

x ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=

 
  [ ] xcc y 21=
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Section 1.3:  The Inverted Pendulum on a Cart and its Linearization 
 

 Consider the Inverted Pendulum on a Cart, as shown by Aplevich [1, page 21]; an 

inverted pendulum as per Section 1.2, but transpose it to residing on top of a cart of mass M.  

This cart can move forward or backward in only one line, along what we will define as the x 

axis.  It is desired to exert a force u(t) on the wheeled cart to balance the mass m, at the end of 

pendulum, vertically.  Note that M >> m.  See Figure 2.1. 

 

Φ

m 

 

Figure 2.1:  Pendulum on a Cart  

 

Ignoring friction and summing up torques at the pendulum pivot we get. 

 

(1.9)  0)cos(xml)sin(mglml 2 =+− ΦΦΦ

 

u(t) 

x 

M 

l 
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The sum of the forces in the horizontal direction is: 

 

(1.10)  ( ) )t(u)cos(ml)sin(mlxmxM)sin(lx
dt
dmxM 2

2

2

=+−+=++ ΦΦΦΦΦ  

 

Since u(t) is the force acting on the cart and is the only applied force to the system. 

 

 As before we are interested in linearizing the system, so as to use the linearized system to 

gain insight into the full nonlinear system; there are at least two methodologies that can be used 

to linearize the system.  We shall start by demonstrating the same methodology used in the 

simple inverted pendulum, wherein we first linearize the nonlinear system equations through 

Taylor expansions and then we solve for the state space variables. 

 

 The Taylor expansion of equations (1.9) and (1.10) can be handled in the same fashion as 

the Taylor expansion of equation (1.3) from Section 1.2.  This results in us dropping the terms 

with  while recognizing thatΦΦΦΦΦΦ  and ,, 22 11 ≈+ Φsin , ΦΦ ≈sin  and 1≈Φcos .  Then 

equations (1.9) and (1.10) can be respectively written linearized as: 

 

(1.11)  0mglmlxml 2 =−+ ΦΦ

 

(1.12)  )(tumlxmxM =Φ++
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 We now choose the state space variables to be: xx =1 , xx =2 , , and .  We 

can now solve equations (1.11) and (1.12) explicitly for .  We already 

know , thus we only need to solve for , which we can do since we have two 

equations and two unknowns.  Then: 

Φ=3x Φ=4x

4321  and  , , xxxx

31  and xx 42  and xx

 

(1.13) 

Ml
ux

Ml
gmM

Ml
umgxMgxx

xx
M
ux

M
mg

M
umgxx

xx

−
+

=
−+

=

=

+
−

=
−−

=

=

3
33

4

43

3
3

2

21

)(

 

 

Thus the state space representation of the inverted pendulum on a cart is: 

 

(1.14) u

Ml

M
x

Ml
gmM

M
mg

x

⎥
⎥
⎥
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 A second more mathematically stringent methodology is also available in order to 

linearize the system.  This second method involves finding the Jacobian Matrix of the system 

evaluated at the equilibrium.    

 

Definition 1.2:  

The Jacobian Matrix is defined as:   

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

n

nn

n

x
f

x
f

x
f

x
f

x
f

1

1

1

1

  

 

Choosing the state variables the same as we did for the previous methodology and solving 

Equations (1.9) and (1.10) for  we find the following four time-invariant state 

equations: 

42 , xxx =Φ=

 

 (1.15)   ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

4

2

3

1

3

1

x
x

f
f

x
x

(1.16)  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+−+−

+
−+−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

l))xsin(mM(
M)xsin(gu)xcos()xsin(mgx)xsin(ml)xcos(

)xsin(mM
u)xsin(g)xcos(mx)xsin(ml

f

f

x

x

2
3

333
2

433

2
3

33
2

43

4

2

4

2

 

 

Taking a Jacobian Matrix of the system defined by equations (1.15) and (1.16) and 

evaluating the matrix at the equilibrium, at which all state variables and u are zero, then the 

partial derivatives all evaluate to zero except for the following. 
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 (1.17) 1
02

1 =
∂
∂
x
f  

 

(1.18)  M
mg

x
f −=
∂
∂

03

2  

 

(1.19)  Mu
f 1

0

2 =
∂
∂  

 

(1.20)  1
04

3 =
∂
∂
x
f  

 

(1.21)  Ml
Mmg

x
f )(

03

4 +=
∂
∂  

 

(1.22)  lMu
f 1

0

4 −=
∂
∂  

 

Thus the linearization is: 

 

(1.23) u
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Note that either method of linearizing the Inverted Pendulum on a Cart (PoC) provides identical 

results. 
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Chapter 2: Required Background Concepts 

 

Section 2.1:  The Null Space of a Matrix 

 

 We begin immediately by providing the definition of the Null Space of a matrix. 

 

Definition 2.1: 
The null space of an m-by-n matrix A is defined as : }0{)( =∈= AxxAΝ nR . 

 

This concept is most easily examined in an example. 

 

Example 2-1: 

(2.1)  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

1000
0101
0010

A

 

It is easy to see that the only vector space that satisfies the definition of a null space for the above 

matrix is: 
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(2.2)  

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

==

0

c

0

c

x)A(N

1

o

 

This can be seen by multiplying the Matrix A by the vector x to get. 

 

(2.3)  

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−=

0

0

0

0

1

0

1

1000

0101

0010

Ax

∆  

 

It should be noted that the null space of a matrix equaling the zero subspace, {0}; is equivalent to 

linear independence of the columns in the matrix. 
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Section 2.2:  Observability 

 

 Ideally in any mechanical system we would want to be all-knowing and all-seeing.  If we 

could observe all the aspects of the system, the position, velocity and acceleration of each part, 

then we could make feedback decisions more easily.  Unfortunately, in the real world we are 

forced to deal with limited resources. Each object we choose to monitor and each fashion in 

which we choose to monitor it costs money.  While developing a mechanical system, we are 

forced to make choices regarding what we want to observe.   However,  risk accompanies these 

choices. If we choose to observe the wrong aspects of the mechanical system, we may not have 

access to the information we need to make decisions.   

 

Definition 2.2:   
We define a system to be observable, over a specified interval: If given the input u(t) and the 

output y(t) over this time interval,  one can uniquely determine the state trajectory x(t) on this 

interval.  

 

This is equivalent to reconstructing x(0) based only on knowledge of y(t) and u(t), since 

knowledge of x(0) uniquely determines x(t).  
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Definition 2.3:   
We define the Observability Matrix, Wo to be: 

(2.4)  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

−1

0

nCA

CA
C

W

 

Where n is the rank of the system.  

 

Theorem 2.1 [2, page 43]: 
A system is observable if and only if Wo has full column rank.   
 

Example 2-2: 
Let us look at our simple inverted pendulum system from section 1.2.  In this system we have 

two natural choices; we can observe position or we can observe velocity.  Let’s look at the 

system with a position measurement to start with.  In that case c1 = 1 and c2 = 0.   The first step to 

determine if the system is Observable with only a position measurement is to differentiate 

 to get: [ ] x 01 y =

 

(2.5)  21 xxy ==
 

Thus we have a matrix: 

 

(2.6)  x
10

01

y

y

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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From this matrix we can determine x1 and x2 on [0, t] we would therefore say that the system is 

Observable.    

 

Note that  =  W
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

y

y

o
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1

0

x

x

 

∆  

  

Example 2-3: 
Let’s check the observability of the system with only a velocity measurement, I.e. [ ] x10 y = . 

 

Then: 

 

(2.7)  ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

01
10

0 CA
C

W

 

Thus the system is also observable with only the velocity measurement.  This is expected since 

velocity and position feed information so easily back and forth.  

∆  

 

Definition 2.4: 
The unobservable subspace is the nullspace of Wo.
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 Section 2.3:  Stability 

 

 Another issue of concern prior to dealing directly with feedback control is that of system 

stability.  That is, if a system is perturbed slightly from equilibrium will the system return back 

to its equilibrium state or will it experience unstable motion.  This concept is essential to the idea 

of feedback control.  If a system is naturally stable then there is often no need to impose an 

artificial feedback control to it, unless one desires to more quickly stabilize the system. 

 

Consider the following system: 

 

(2.8) 0 ) 0 f(      f(x)      x ==      where  
 

Definition 2.5:  
The equilibrium point x = 0 of (2.8) is: 

• stable if, for each 0>ε , there is 0)( >= εδδ  such that 

0t  , ||)t(x||   ||)0(x|| ≥∀<⇒< εδ  

• unstable if not stable. 

• asymptotically stable if it is stable and δ  can be chosen such that 

0)t(xlim ||)0(x||
0t

=⇒<
→

δ  

 

Theorem 2.2 [2, page 20]: 
A system,  is (asymptotically) stable if and only if all the eigenvalues,Axx = iλ , of A have 

negative real part, that is )Re( iλ  are negative.    
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Both our systems from sections 1.2 and 1.3 are nonlinear.  We stated in section 1.2 that 

the stability results for the linearized system would also hold true for the nonlinear system, thus 

allowing us to study the linearized system for ease of calculation.  The following theorem 

provides the mathematical details behind that ascertation. 

 

Theorem 2.3 [4, page 139]: 
Let x = 0 be an equilibrium point for the nonlinear system: 

)(xfx =  

Where f: D       Rn is continuously differentiable and D is a neighborhood of the origin.  Let 

0

)(
=∂

∂
=

x

x
x
fA  

Then,  

1. The origin is asymptotically stable if 0)Re( <iλ for all eigenvalues, iλ , of A. 

2.  The origin is unstable if 0)Re( >iλ for one or more eigenvalues, iλ , of A. 

 

Example 2-4: 
For an example of stability let us look at our simple inverted pendulum system from section 1.2.  

Here the A matrix equals: 

 

(2.9)    ⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

A

 

The eigenvalues of this system are λ =1 and λ =-1, therefore as expected the system is 

unstable around the upper vertical equilibrium.  Hence if we desire to asymptotically stabilize the 
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system around the upper equilibrium we need to impose an appropriate feedback control to the 

system.   

∆
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Section 2.4:  Controllability  

 

The first step when dealing with systems that are naturally unstable is to determine if they 

are controllable.  “A system is said to be controllable at time t0 if it is possible by means of an 

unconstrained control vector to transfer the system from any initial state x(t0) to any other state in 

a finite interval of time.”1   

 

Definition 2.6:      
We define a system {A, B} to be controllable over [t0, t1] (with t1 > t0) if for every pair of states 

x0, x1 in X, there is a control u such that the solution x of 

 

(2.10)  00 )(   with   )()()( xtxtButAxtx =+=  satisfies  x(t1) = x1.

 

There are two tests for controllability that shall be used in this paper, the Kalman Controllability 

Rank Condition and the PBH Controllability Test.   

 

Theorem 2.4 [2, page 57] 
The Kalman controllability rank test says that the system BuAxx += is controllable if and only 

if rank Wc := rank[B  AB  A2B  …  An-1B] = n,  where A is an n x n matrix.   

 

This is equivalent to saying that the controllability matrix Wc has full row rank.   

 

                                                 
1 Katsuhiko Ogata, Modern Control Engineering, 4th Ed. New Jersey: Prentice Hall 2002, pp 789 
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Example 2-5: 
Using the Kalman Controllability Rank test on the simple inverted pendulum from section 1.2 

we see that: 

 

(2.11)   ⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

B

(2.12)   ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

1
0

01
10

AB

(2.13) Thus    ⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

cW

 

This as we can see has full row rank.  We thus determine using the Kalman Controllability Rank 

test that the inverted pendulum system is controllable.   

∆  

 

Theorem 2.5 [2, page 59]: 
The PBH controllability test says that the system BuAxx += is controllable, that is the matrix 

pair {A, B} is controllable, if and only if n B]   λIrank[A =− for all eigenvalues λ  of A.   

 

Example 2-6: 
Let us also try this test on the simple inverted pendulum.  The first step is to find the eigenvalues, 

we already know the system has the eigenvalues λ =1 and λ =- 1.   

 

For λ =1: 

(2.14) =  n  B]  λIrank[A =− 2
111
011

1
0

10
01

1
01
10

=⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
rankrank
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For λ =-1: 

(2.15) =  n  B]  λIrank[A =− 2
111
011

1
0

10
01

1
01
10

=⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
rankrank

 

Thus as expected the PBH test also shows that the inverted pendulum system is controllable. 
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Section 2.5:  Stabilizability 

 

Interest in controllability is not simply an academic question of whether or not a system 

is controllable.  The fundamental goal of controllability is to asymptotically stabilize a system; if 

a system is controllable then it is also stabilizable.   

 

Definition 2.7: 
A system is stabilizable, by linear feedback, if there exists an m x n matrix k such that the system 

obtained by setting u = kx is asymptotically stable.   

 

That is, if the system xBkAx )( +=  is asymptotically stable per definition 2.5.    In the 

above definition the matrix k is defined as a ‘gain’.  The system xBkAx )( +=  is called a closed-

loop control system; a closed-loop system is simply a system that utilizes feedback. 

 

Theorem 2.6 [2, page 123] 
The PBH test for linear stabilizability says that the pair {A, B} is stabilizable if and only if 

nBIARank =− ]    [ λ  for every eigenvalue λ  of A with non-negative real part (and thus for 

every complex λ  in the right half plane). 

 

 A positive result, i.e. a result where the rank does equal n, of the PBH test for linear 

stability means that all unstable eigenspaces of A lie within the controllable subspace.  This 

makes good intuitive sense, once it is realized that the PBH test for linear stabilizability is a 

direct offshoot of the PBH test for controllability.  If there exists an unstable eigenspace for 
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which the PBH test is positive then that eigenspace is controllable and if the eigenspace is 

controllable then it is stabilizable. 

 

Example 2-7: 
For example look at the simple inverted pendulum from section 1.2.   There is only one non-

negative eigenvector, λ =1. 

 

For λ =1: 

(2.16) =  n  B]  λIrank[A =− 2
111
011

1
0

10
01

1
01
10

=⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
rankrank

 

Thus the unstable eigenspace associated with λ =1 is controllable and is thus stabilizable.  

∆  

 

In sections 1.2 and 1.3 we stated that linearizations of nonlinear systems allow us to study 

important aspects of the linear system and draw conclusions that hold true for the nonlinear 

system, in a localized area.  In section 2.3 we showed that, within a localized area, the stability 

properties of a nonlinear system can be determined by examining the linearized system.  The 

following theorem provides the basis for determining the stabilizability properties of the 

nonlinear system through examination of the linearized system. 

 

 First we must set up some basic notation.  Remember that we are dealing with the linear 

approximation near x = 0.  First we take a nonlinear system of the form,  
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(2.17) ;  uxgxfx )()( +=
 

where we are interested in finding a continuously differentiable feedback )(xu α= that is defined 

locally around x = 0.  We want to show that the corresponding closed loop system, 

 

(2.18) )()()( xxgxfx α+= ,  

 

would be locally asymptotically stable at  x = 0. 

 

 Since we are interested in determining to what extent the stabilizability of the above 

nonlinear system depends on the properties of the linear approximation of the system near x = 0, 

we will expand the system, by Taylor’s theorem, where f2(x) represents all the f(x) terms of order 

two and greater and g1(x) represents all the g(x) terms of order one and greater.  

 

(2.19)  
)x(gB)x(g

)x(fAx)x(f

1

2

+=
+=

 

Where 
0

)(
=∂

∂
=

x

x
x
fA  and B = g(0) 
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Theorem 2.7 [3, page 173] 
Suppose the pair {A, B} from the Jacobian linearization of system (2.19) is (asymptotically) 

stabilizable.  Then any linear feedback which stabilizes the linear approximation will also 

asymptotically stabilize the original nonlinear system, locally.   

If, however the pair {A, B} is not (asymptotically) stabilizable, and has an unstable, 

uncontrollable eigenspace, that is a λ  with 0)Re( >λ  which “fails” the PBH stabilizability 

test, then the original nonlinear system is not (asymptotically) stabilizable by any smooth state 

feedback. 

 

Proof:   
Suppose the linear approximation of the nonlinear system is asymptotically stabilizable.  Let F 

be any matrix such that (A + BF) has all eigenvalues with negative real parts, and set u = Fx on 

the nonlinear system.  The resulting closed loop system is: 

 

(2.20) ,Fx)x(g)x(fx)BFA(Fx)x(g)x(fx 12 +++=+=  

 

And its linear approximation is .x)BFA(x +=  This linear approximation has all eigenvalues 

with negative real parts.  Thus, by Theorem 2.3 the nonlinear closed loop system is locally 

asymptotically stable at x = 0. 

 

On the other hand, suppose {A, B} is not stabilizable.  Then for any feedback matrix F, 

the matrix A + BF must have at least one eigenvalue with positive real part.  Let )(xu α=  be 
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any smooth state feedback.  Then the corresponding closed loop system has a linear 

approximation of the form 

 

(2.21) 
( ) ( ) ( )[ ] ( )

0x0x x
F e      wherxBFAx

x
xxgxfx

==
⎥⎦
⎤

⎢⎣
⎡
∂
∂

=+=⎥⎦
⎤

⎢⎣
⎡

∂
+∂

=
αα

, 

 

which has eigenvalues with positive real part, regardless of the value of α . Note that it is only 

the linear part of the feedback which can affect the Jacobian linearization of the closed loop 

system.   So in this case, by Theorem 2.3, the nonlinear system is unstable at x = 0. 

∆  

 

The case of an eigenvalue with 0)Re( =λ , which is not stabilizable as determined by a 

PBH test, is not covered by theorem 2.7.  Such cases are known as critical cases of asymptotic 

stabilization and are not considered in this thesis. 
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Section 2.6:  Detectability 

 

An intuitive concept of detectability is that a system is detectable if its unobservable 

subspace is stable. Recall that the unobservable subspace is the nullspace of Wo.   

 

The precise definition for detectability is: 

 

Definition 2.8: 
A system {A, C} is defined to be Detectable if there exists a matrix L such that the system 

  is asymptotically stable.  ( xLCAx += )
 

This concept is most easily understood through example. 

 

Example 2-8: 
We define the following {C, A} system as: 

 

(2.22)  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

300
020
001

A

[ ]001=C  

 

First we note that the system is not observable. 

 



www.manaraa.com

 30 

(2.23)  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

001
001
001

2
0

CA
CA
C

W

 

The question is; can we create a matrix L such that the system ( )xLCAx +=   is asymptotically 

stable?   

We create the system . ( )xLCAx +=

 

(2.24)   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

+
=+

30
02
001

3

2

1

l
l

l
LCA

 

This system has the following characteristic polynomial: 

 

(2.25) ( ) ( ) ( ) 0132 1 =−−⋅+⋅+ lλλλ  

 

Note that we need only choose parameter l1 correctly to have all negative eigenvalues as 

system (2.22) already has two negative eigenvalues.  If we set l1 < -1, then system (2.22) is 

asymptotically stable.  Thus the {C, A} is detectable.  

∆  
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It is interesting to note that the above example provides some nice insight into the intuitive 

concept of detectability introduced at the beginning of this section.   Notice that the observability 

matrix Wo shows that we can only observe the eigenspace associated with the x1 component of 

the system.  Similarly it should be noted that l1 is the only eigenvalue that needs to be controlled 

in order for the system to be asymptotically stabilized.   

 

What would happen if the only observable component of the system was x2? 

 

Example 2-9 
Utilizing the same A matrix as the prior example we examine the effects of a revised C matrix. 

 

(2.26)  [ ]010C =

 

Again we note that the system is not observable. 

 

(2.27)  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

040
020
010

2
0

CA
CA
C

W

 

In this circumstance can we create a matrix L such that the system ( )xLCAx +=   is 

asymptotically stable?  Again we create the system ( )xLCAx += . 
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(2.28)   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=+

30
020
01

3

2

1

l
l

l
LCA

 

This system has the following characteristic polynomial: 

 

(2.29) ( ) ( ) ( ) 0231 2 =+−⋅+⋅− lλλλ  

 

Note that there is a nonnegative eigenvalue, 1=λ , which we cannot access.  Thus no L matrix 

can be devised that will asymptotically stabilize the system ( )xLCAx += , and as a result the 

system is not detectable. 

∆  

 

In this example we find that by changing the aspects of the system that we observe, the 

system is no longer detectable.  This is because compared to example 2-8 where the 

unobservable subspace was already stable, in example 2-9 the unobservable subspace is unstable; 

as evidenced by the non-negative eigenvalue. 

 

It is sometimes difficult to determine if a system is detectable by utilizing definition 2.8.  

Thus the following PBH Detectability test is provided. 
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Theorem 2.8 (PBH Detectability Test) [2, page 147]: 
The pair {C, A} is detectable if and only if the kernel of      

   ⎥
⎦

⎤
⎢
⎣

⎡ −
=

C
IA λ

Γλ

is the zero subspace, {0}; for every eigenvalue of A where 0)(RE ≥λ . 

 
Example 2-10: 
Apply the PBH detectability test to the Simple Inverted Pendulum, 

 

(2.30)  u(t) 
1
0

 x 
01
10

x ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=

[ ] x01 y = . 

 

In order to see if a system is detectable we calculate the kernel of λΓ , for all eigenvalues with 

0)(RE ≥λ .  System (2.30) only has one nonnegative eigenvalue 1=λ , thus:  

 

(2.31)  

[ ] ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ −
=Γ

0
1

1

1
1
1

0

1

1
1

01
0

0
01
10

λ
λ

λ
λλ

λ C
IA

 

Therefore the kernel of }0{=Γλ and we can say that system (2.30) is detectable. 

∆  
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Section 2.7:  Influence of Observable Output on Detectability 
 

To demonstrate the influence the C matrix, the observable output, has on Detectability 

and thus on the Stabilizability of a system we create two sample systems, both utilizing the A 

matrix from examples 2-8 and 2-9, that differ only in their observable output.  Note that the B 

matrix is not mentioned; remember that Detectability does not depend on the B matrix, only on 

the matrix pair {C, A}.   

 

The following A matrix will again be utilized for both examples: 

 

(2.32)  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

300
020
001

A

 

Remember that this A matrix has the following eigenvalues, 1, -2, -3.  Thus for the system to be 

Detectable we need only calculate the Kernel, per Theorem 2.8, for 1=λ . 

 

Example 2-11: 
The first C matrix we examine is defined as: 

 

(2.33)  [ ]001=C
 

Thus  equals: 1=Γλ
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(2.34)  

[ ] ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=⎥

⎦

⎤
⎢
⎣

⎡ −
=Γ

001
400

030
000

001
100
010
001

300
020
001

C
IA λ

λ

 

It is readily apparent the dimension of the null-space is 0.  Thus we can conclude that 

with  the system {C, A} is detectable. [ 001=C ]

∆  

 

Example 2-12 
The following example utilizes the identical A matrix, equation (2.32), as above.  However in 

this example the C matrix is changed to: 

 

(2.35)  [ ]100=C

 

In this case  equals: 1=Γλ

 

(2.36)  

[ ] ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=⎥

⎦

⎤
⎢
⎣

⎡ −
=Γ

100
400

030
000

100
100
010
001

300
020
001

C
IA λ

λ

 

It is readily apparent the dimension of the null-space is not 0, it is in fact of dimension 1.  

Thus we can conclude that with [ ]100=C  the system {A, C} is not detectable. ∆  
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Chapter 3: Stabilizing the Simple Inverted Pendulum 
 

Section 3.1:  Static State Feedback 

 

The most intuitive method of asymptotically stabilizing a system at an equilibrium is to 

allow the usage of a full ‘static’ state feedback controller and find a specific case that works.  

 

Example 3-1 
In the following example we utilize the closed loop system, xBkAx )( += , from section 2.5, 

designing a feedback; [ ]βα −−=k .   

 

(3.1)  [ ] xx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
= βα

1
0

01
10

 

This can be simplified down by combining terms to become: 

 

(3.2)  xx ⎥
⎦

⎤
⎢
⎣

⎡
−−

=
βα1

10

 

In order to show that this is stabilizable we must be able to find negative eigenvalues for the 

system (3.2).  Its characteristic polynomial is: 

 

(3.3)  ( )( ) 1
1

1
detBkAIdet 2 −++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−
−

=+− αβλλ
βλα

λ
λ
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We want 0<λ ; choose a specific eigenvalue, say 1−=λ .  In that case we know exactly 

what form we need to place equation (3.3) into.  Since if 1−=λ  then a 2nd degree characteristic 

polynomial would look like: ( ) .   This means that we can find values 121 22 ++=+ λλλ

2 and 2 == αβ  that allow us to match the characteristic polynomial in (3.3) with the 

characteristic polynomial from 1−=λ .  Thus using those choices for α and β  we can say that 

the inverted pendulum system is stabilizable. 

∆  

 

 In a more general fashion we can find the set of values for α and β  for which the simple 

inverted pendulum with full state static feedback is stabilizable.    

 

Example 3-2: 
Solving (3.3) for λ  we find: 

 

(3.4)  
2

)1(4
2

2 −−
±

−
=

αββλ  

 

Since we need λ <0; we find that we need β >0 and α >1, in fact we need 12 −> αβ .  

This is true since 
2
β−  will dominate 

2
)1(42 −− αβ

 as long as .  Thus we )1(42 −> αβ
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need 12 −> αβ .  While α >1 ensures that 1−α  is positive, thus ensuring both that 

)1(4 −− α is negative, as well as β >0. 

∆
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Section 3.2:  Constant Disturbances 

 

 What happens if a system is experiencing a constant disturbance?  How would that affect 

the stabilizability of the system, by static feedback?  Imagine the simple inverted pendulum, 

from section 1.2, mounted in a wind tunnel with a constant wind. 

  

Example 3-3: 
If we continue looking at our simple inverted pendulum example about the upper equilibrium, 

we would see that the new linear system would be: 

 

(3.5)   du +=Φ−Φ
 

Where d is a constant disturbance.  Therefore the state space representation of the system with a 

constant disturbance would become: 

 

(3.6)  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

d

0
u(t) 

1

0
 x 

01

10
x

 

Looking at the system u = kx where ]  [ βα −−=k , the system with a disturbance 

 becomes: dxBkAx ++= )(

 

(3.7)  [ ] ⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=

d
xx

0
1
0

01
10

βα
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Combining terms we find: 

 

(3.8)   ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−−

=
d

xx
0

1
10
βα

 

If we split this system back out into two first order differential equations we find that: 

 

(3.9)   
dxxx

xx
+−−=

=

212

21

)1( βα

 

Remember that we defined  and  then: Φ=1x Φ=2x

 

(3.10)   d+Φ−Φ−=Φ βα )1(

 

Writing this equation in standard form we have: 

 

(3.11)   d=Φ−+Φ+Φ )1(αβ
 

Note that the general solution of this 2nd order differential equation 

is, , where )()()( ttt phgen Φ+Φ=Φ )(thΦ  is the solution of the homogenous system and )(tpΦ  is 

any particular solution of the non-homogenous system.  We know from section 3.1 that 

 as 0)( →Φ th ∞→t , through the choice of 12 −> αβ and α >1.   
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To find  we utilize the method of undetermined coefficients from linear algebra.  

Since d is a constant we set = constant.  Then substitute our 

)(tpΦ

)(tpΦ )(tpΦ into equation (3.11).  

We find that the derivative terms become zero and we are left with: 

 

(3.12)  dp =Φ− )1(α  so 
)1( −

=Φ
α

d
p  

 

Thus   )(tgenΦ
)1( −

=Φ
α

d
p  ≠ 0 as t  ∞ . 

 

 Thus a static linear feedback control can asymptotically stabilize the system at an 

equilibrium even with a constant disturbance d.  However the equilibrium that is obtained will 

not be at  but rather at  0=Φ
)1( −

=Φ
α

d .  Thus we would say that Φ  has a “steady state 

error” of  .   pΦ

∆  



www.manaraa.com

 42 

Section 3.3:  Dynamic Feedback 
 

 In section 3.2 we demonstrated that a “static” feedback controller which is capable of 

asymptotically stabilizing a system to the origin may not be capable of asymptotically stabilizing 

a linear system to the origin, if the system is under the influence of a constant disturbance d.   

This then provides the motivation to look at another class of controllers, Dynamic feedback 

controllers, in the hope that this new form of feedback will prove able to asymptotically stabilize 

a linear system with disturbance.  Dynamic feedback controllers are so called because the 

feedback utilizes a set of auxiliary variables which involve an integration of state variables.  

 

Definition 3.1 
A linear dynamic feedback controller is described by the following state space system:   

     yBA cc += ξξ

yDCu cc −−= ξ  

 

It is important to note that the dynamic feedback controller utilizes y, the output of the 

system to be controlled, as its only input.  Subsequently the only output of the dynamic feedback 

controller is u.   

 

Example 3-4 
In this example we will utilize the simple inverted pendulum system with a constant disturbance 

as detailed in equation (3.5). 
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We will start by adding an auxiliary variable x0 to the system.  This auxiliary variable 

represents a very simple case of a dynamic feedback controller. 

 

We define this variable to be: 

 

(3.13)   ∫ ∫ Φ==
t t

ds)s(dsxx
0 0

10

 

Now the augmented system will be: 

 

(3.14)     

duxx
xx
xx

++=
=
=

12

21

10

 

The state space representation of the augmented system is: 

 

(3.15)   dxx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
0

010
100
010

 

As in section 3.1 we create a feedback k such that the closed loop system, , is 

asymptotically stable.  Then: 

xBkAx )( +=
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(3.16)   [ ] xxx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

βαµ
βαµ

1
100
010

1
0
0

010
100
010

 

 Now we want to find feedback gains µβα ,,  such that for all constant disturbance forces 

 all solutions of the closed loop system (3.16) converge to the point  as t R∈d ( )0 ,0 ,e ∞ .  

Thus what we are trying to do is to transfer the steady state error 
)1( −

=Φ
α

d  to a steady state 

error, ‘e’, in our auxiliary variable x0. 

 

We can solve the system xBkAx )( +=  using the same methodology that we used to 

solve the static feedback system, in section 3.1.  First we determine the characteristic polynomial 

of : xBkAx )( +=

 

(3.17)  0)1(23 =+−++ µαλβλλ

 

We want 0<λ , choose a specific eigenvalue, say 1−=λ .  In that case we know exactly what 

form we need to place equation (3.17) into.  The characteristic polynomial for 1−=λ  is: 

 

(3.18)  0133)1( 233 =+++=+ λλλλ
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Thus we find values 3=β , 4=α  and 1=µ  such that our characteristic polynomial (3.17) 

matches the characteristic polynomial of 1−=λ .  This provides the following closed loop 

system: 

 

(3.19)  xxx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

331
100
010

1
100
010

βαµ
 

This system has eigenvalues of -1, -1, -1, as designed. 

 

Thus we can choose values for β , α  andµ  such that the dynamic closed loop system 

 is asymptotically stable.  We have transferred the steady state error from the 

physical state variables to the auxiliary variables, thus transferring the error from the physical 

system to a ‘virtual’ error in the feedback controller.   

( xBkAx += )

∆  
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Section 3.4: General Structure for Observer based Controller 
 

In order to provide a more powerful method for devising dynamic output feedback, we 

need to be able to generalize our accomplishments from the last section.  The first step to doing 

this is to take another look at our state space systems: 

 

(3.20)  
Cxy

BuAxx
=

+=

 

Realize that the only information we have available to us consists of the measured output 

y, the input u and the known coefficient matrixes A, B and C.  The true state of x(t) is not known 

to us.  Since we wish to asymptotically stabilize x(t), we must create a good asymptotic state 

estimate, )(tξ ;  where )(tξ  estimates the true state x(t).  Thus we make the following definition: 

 

Definition 3.2 
)(tξ  is an Asymptotic Estimate of x if [ ] 0)()(lim =−

∞→
ttx

t
ξ  

 

We want to be able to find an asymptotic estimate of x(t) using only the output y and the 

input u, of system (3.20); thus we provide the following definition: 
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Definition 3.3 
An Asymptotic State Estimator is a system, with the form   which has the 

following property:  If {u, y} is any input-output pair for (3.20), then the corresponding out put 

yBA ee += ξξ

)(tξ  of the estimator is an Asymptotic Estimate of the corresponding system state x(t).  This is 

true independent of the initial condition of x(t). 

 

Thus an asymptotic state estimator for a given system, (3.20), is any system which 

utilizes {u, y} from (3.20) as inputs and has an asymptotic estimate )t(ξ , of the state of (3.20) as 

the output.   

 

The following theorem provides a useful method of determining if an asymptotic state estimator 

exists for a given system (3.20). 

 

Theorem 3.1 [2, page 145] 
System (3.20) is detectable if an asymptotic state estimator exists for the system (3.20).  

 

 We now have a methodology to determine if a system is detectable.  Once we have 

identified that a given system is detectable we know, by Theorem 3.1, that we can create an 

asymptotic state estimator for that system.  Thus we now provide a generalized methodology for 

the creation of an asymptotic state estimator.   

 

We first assume that the matrix pair {C, A} is detectable. Then we consider the following 

system, which is a special case of the general dynamic feedback controller from definition 3.1.  

We consider the system, 
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(3.21)  )( ξξξ CyLBuA −−+=

 

to be an asymptotic state estimator for {C, A}.  We call this system (3.21) an observer system.   

 

Note that the matrix L is the only undefined term in the above system; L is chosen so that 

)(tξ asymptotically estimates x(t).  Our aim is to define a matrix L such that we achieve an 

estimation error that goes to zero as t approaches infinity. 

 

We define our error to be: 

 

(3.22) ξ−= xe :  

 

We show through algebraic manipulation that: 

 

(3.23)  

eLCAe
LCeAee

CCxLAee
CyLAee

CyLBuABuAxe
xe

)(

)(
)(

)(

+=
+=

−+=
−+=

−+−−+=
−=

ξ
ξ

ξξ
ξ

 

This system should seem familiar from the discussion of Detectability in Chapter 2.   We 

can achieve  by designing L appropriately.  Since we assumed that the system {C, A} 0=
∞→

elim
t
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was detectable to start with, then by definition 2.8 we can define an L such that the system 

(A+LC) is asymptotically stable to x(t). 

 

The question then becomes: How do we devise such an L?   

 

First we define u to be: 

 

(3.24) ξKu =  

 

The matrix K is devised so that the asymptotic estimator )(tξ , is asymptotically stable to the 

origin.  The matrix L and the matrix K must both be designed correctly so that the observer 

system is asymptotically stable to the origin, thus ensuring that x(t) is also asymptotically stable 

to the origin.   

 

We can use (3.20) along with (3.21) and (3.24) to write the combined system for ),( ξx  as: 

 

(3.25)  ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
++−

=⎥
⎦

⎤
⎢
⎣

⎡
ξξ
x

BKLCALC
BKAx

 

A more transparent structure is available though displaying the system is terms of .  In this 

set of variables the closed loop system is: 

),( ex
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(3.26)  ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+
−+

=⎥
⎦

⎤
⎢
⎣

⎡
e
x

LCA
BKBKA

e
x

0

 

The beautiful aspect of showing the system in this form is that it is an upper block 

triangular matrix.  Thus it becomes a simpler matter to choose the K and L matrixes such that the 

system has eigenvalues with a negative real part, since the two matrixes are now decoupled.  In 

this fashion the feedback control, the matrix K, and the matrix L can be designed independently 

of each other so that the estimated system, )(tξ ,  asymptotically goes to x(t), while x(t) is 

asymptotically stabilized. 

 

Theorem 3.2 [2] 
There exists an observer based dynamic feedback controller for: Cxy     ,BuAxx =+=  

If and only if the pair {A, B} is stabilizable and the pair {C, A} is detectable. 

 

This makes good intuitive sense.  We have already established that the K and L matrices 

are an integral part of the observer based dynamic system.  Having appropriate K and L matrices 

which provide stabilizability and detectability is therefore obviously required for an observer 

based dynamic controller.  It is slightly less obvious that the reverse is also true, if an observer 

based dynamic controller can be created then system (3.26) is the only form you need examine.  

Other forms of observer based dynamic controllers may work but (3.26) is guaranteed.  As such 

(3.26) guarantees that the pair {A, B} is stabilizable and the pair {C, A} is detectable 
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Section 3.5:  Dynamic Output Feedback of the Simple Inverted Pendulum 

 

 We can utilize our Simple Inverted Pendulum system to demonstrate the concepts from 

section 3.4.  

 

Example 3-5: 
In this first example only the position measurement is observable.   

 

(3.27)  u(t) 
1
0

 x 
01
10

x ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=

[ ] x01 y =  

 

The first step is to realize that the system is detectable; we showed this in example 2-10.  

We also know it to be true since we already demonstrated that the system is observable and 

observability implies detectability.   

 

Thus we can form the system as shown in equation (3.26) in order to find values for L and K. 

 

(3.28)  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

−−+
=⎥

⎦

⎤
⎢
⎣

⎡

2

1

2

1

2

1

2121

0100
100

1
0010

e
e
x
x

L
L

KKKK
e
x
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It is easy to choose values for K and L so as to produce eigenvalues with negative real 

parts.  For example choose terms of L such that the lower right block has eigenvalues -1, -1 and 

choose terms for K such that the upper left block has eigenvalues -1, -1.   Then it is easy to see 

that we much choose K1=-2, K2=-2, L1=-2 and L2=-2.     Therefore the system has the closed 

loop form:  

(3.29)  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
=⎥

⎦

⎤
⎢
⎣

⎡

2

1

2

1

0100
1200
2221
0010

e
e
x
x

e
x

 

As expected system (3.29) has eigenvalues -1,-1,-1,-1.  Thus the choices of K and L guarantee 

that the combined system is asymptotically stabilizable using dynamic feedback. 

∆  

 

Example 3-6 
What happens if we change the C matrix?  Is the system still detectable?  Still stabilizable?   

 

Check with C matrix: 

 

(3.30)  [ ] x10 y =
 

Our intuition tells us that the system is still detectable, and thus stabilizable. We already 

know, from example 2-3, that while observing only x2 the system is observable and observability 
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is stronger then detectability.    Thus we can form the system (3.26) in order to find values for L 

and K, which will asymptotically stabilize the system with this C. 

 

(3.31)  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−−+

=⎥
⎦

⎤
⎢
⎣

⎡

2

1

2

1

2

1

2121

100
1000

1
0010

e
e
x
x

L
L

KKKK
e
x

 

We can choose values for K and L, as we did in the above example, so as to produce 

eigenvalues with negative real parts.  This time we choose terms of L such that the lower right 

block has eigenvalues -2, -2 and choose terms for K such that the upper left block has 

eigenvalues -3, -3.   Then it is easy to see that we much choose K1=-10, K2=-6, L1=-5 and L2=-4.     

Therefore the system has the closed loop form:  

 

(3.32)  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
=⎥

⎦

⎤
⎢
⎣

⎡

2

1

2

1

4100
4000

61069
0010

e
e
x
x

e
x

 

As expected system (3.32) has eigenvalues -3,-3,-2,-2.  Thus the choices of K and L guarantee 

that the combined system is asymptotically stabilizable using dynamic feedback. 

∆   
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Chapter 4: Stabilizing the Pendulum on a Cart (PoC) 
 

Section 4.1:  PBH Test for Linear Stabilizability  
 

Prior to examining the specifics regarding stabilization of the Pendulum on a Cart system 

utilizing either Static State or Observer Based Dynamic feedback it is important to remember 

that we have not yet even shown that the Pendulum on a Cart system is stabilizable by any linear 

feedback.  In order to prove this simple yet vitally important fact we will use the PBH test for 

Linear Stabilizability from Chapter Two. 

   

First we will display the A and B matrices we derived for the Pendulum on a Cart system, back in 

section 1.3, at the beginning of this chapter for ease of reference. 

 

(4.1)  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−

=

0
Ml

g)mM(00

1000

0
M
mg00

0010

A  
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(4.2) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

Ml
1

0

M
1

0

B  

 

Note that we can choose our units such that m = 1, g = 1 and l = 1; however since M >> 

m, we cannot choose M =1; for the moment it will be advantageous to us to leave M as an 

arbitrarily large finite set value.  Once these unit choices are made then equations 4.1 and 4.2 

become: 

 

(4.3) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−

=

0
M

1M00

1000

0
M

100

0010

A  

 

(4.4) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

M
1

0

M
1

0

B  

 

 Next we use Theorem 2.6, the PBH test for linear stabilizability, to determine if the 

Pendulum on a Cart system is stabilizable using linear feedback.  Remember that the test requires 
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that  hold true for every n]B    IA[Rank =λ− 0)Re( ≥λ  eigenvalue.  For the Pendulum on a 

Cart system we have the following eigenvalues: 0, 0, 
M

)1M(M +
 and -

M
)1M(M +

.  Thus we 

must check to ensure that the rank test holds for both the zero and the positive eigenvalue.   

 

For 
M

)1M(M +
=λ  : 

 

(4.5) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+
−

+

+
−

−+
−

+
−

=−

MM
MM

M
M

M
MM

MMM
MM

M
MM

BIA

1)1(100

01
)1(

00

101)1(
0

0001
)1(

]    [ λ  

 

This obviously has a rank 4.   

 

For  : 0=λ
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(4.6) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+

−

=−

M
10

M
)1M(00

01000

M
10

M
100

00010

]B    IA[ λ  

 

This also has a rank 4.   

 

Thus since for all non-negative eigenvalues the system ]B    IA[ λ−  has rank = n, then as 

expected the Pendulum on a Cart system is stabilizable by some linear feedback.  It is important 

to note that this property; that of the stabilizability of the system by linear feedback, is not related 

in any fashion to the value of M; as long of course as M >> m. 
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Section 4.2:  Static State Feedback of the Pendulum on a Cart   
 

As in the case of the simple inverted pendulum, the logical first step in dealing with the 

stability of the pendulum on a cart is to examine if the system can be stabilized using static state 

feedback and if so, what some of the system parameters are for such a stabilization.   As with the 

case of the simple inverted pendulum we set kxu =  such that xBkAx )( += .  However since the 

Pendulum on a Cart system has four system variables, we will define the k matrix as: 

 

(4.7)  [ ]4321 kkkkk =

 

Thus  becomes: xBkAx )( +=

 

(4.8) x

M
k

M
k

M
)1M(

M
k

M
k

1000

M
k

M
k

M
1

M
k

M
k

0010

x

4321

4321

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

+−−

+
−

=  

 

The characteristic polynomial of this matrix is then:  
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(4.9) 
M
k

M
k

M
11

M
k

M
k

M
k

M
k 123122434 +⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ −−+−+⎟

⎠
⎞

⎜
⎝
⎛ −+ λλλλ  

 

We choose a negative eigenvalue, say 1−=λ .  We know the characteristic polynomial for 

1−=λ  is:  

 

(4.10)  1464)1( 2344 ++++=+ λλλλλ

 

Thus we can solve for the values of ki, such that the characteristic polynomial for our 

system, the pendulum on a cart, is the same as the characteristic polynomial for 1−=λ , thus 

guaranteeing that our system has an eigenvalue of -1, with a geometric multiplicity of 4, and is 

thus asymptotically stable.   

 

The values of ki for which this works are: 

k1 = M 

k2 = 4M 

k3 = 8M + 1 

k4 = 8M 

 

It is worth noting again that the value of M is not relevant to the fundamental discussion 

regarding the ki parameters for which the system is stable.  As long as M is a finite positive 

number, where M >> m then the system dynamics are not affected.  
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 In Section 3.3 we found that it was feasible to find the set of all ki values for which the 

simple inverted pendulum system was stable.  For the pendulum on cart system this type of 

solution is no longer feasible.  It would require solving a 4th order equation, equation 4.9, for the 

ki values; in general there are no explicit solutions to higher order equations. 
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Section 4.3:  PBH Detectability Test 
 

   Prior to determining some parameters for an Observer Based Feedback Controller of the 

Pendulum on a Cart system we need to ensure that a good estimator exists for the system.  That 

is we need to determine if an asymptotic state estimator exists, to do this we will use the PBH 

detectability test from Theorem 2.8.   

 

Since the PBH detectability test utilizes a C matrix, we need to define a particular C matrix for 

the system to determine if the {C, A} system is detectable for that given C matrix.  

 

Example 4-1 
We shall define the C matrix to be: 

 
(4.11)  [ ]0001C =

 

Remember that to use the PBH detectability test we need to know the eigenvalues for the A 

matrix.  We already computed these values back in section 4.1.  So we will directly apply them 

here. 

 

For 
M

)1M(M +
=λ  : 
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(4.12) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−+

+−

−+−

+−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

=

0001

M
)1M(M

M
)1M(00

1
M

)1M(M
00

0
M

1
M

)1M(M
0

001
M
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We then determine what the kernel of the λΓ  matrix is. The kernel is the zero subspace.   

 

For 0=λ : 
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The kernel of this matrix is also the zero subspace.   
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Since both the non-negative eigenvalues of the A matrix have the zero subspace for the 

 matrix we say that the given {A, C} system is detectable.  Thus an asymptotic state estimator 

can be found for the system and we can create an Observer Based Feedback controller for the 

system. 

λΓ

∆  

 

Our fortuitous choice for the C matrix provides us with a vitally important piece of 

information.  Notice that when dealing with 0=λ  the only entry in the 1st column of the λΓ  

matrix, was from the C matrix.  If the C matrix had been designed in any fashion such that this 

entry, which corresponds to the x1 variable, was to be left blank, then the kernel of the λΓ  matrix 

would not be the zero subspace.  The column rank of the λΓ  matrix would be less then n, 

providing a kernel of [1, 0, 0, 0].  Thus no asymptotic state estimator could exist for the system 

and the system would not be stabilizable by Observer Based Dynamic Feedback.   

 

This idea is easily demonstrated looking at a further example.   
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Example 4-2: 
Take the C matrix, .  We expect, based on our prior observations, that since the 

c

[ 1110=C ]

1 entry is zero, the resulting system will prove not to be detectable.     

 

We start off the same as before, utilizing the eigenvalues for the A matrix.   

 

For 
M

)1M(M +
=λ  : 

 

(4.14) 
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Determine the kernel of the  matrix. The kernel is the zero subspace.   λΓ

 

For 0=λ : 
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(4.15) 
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Providing a dimension of 1 with a kernel, as expected, of [1, 0, 0, 0].   

∆  



www.manaraa.com

 66 

Section 4.4:  Observer Based Dynamic Feedback Controller 

 

Now that we have determined that the Pendulum on a Cart system, system {C, A}, is 

detectable via theorem 2.8, we can create an Observer Based Dynamic Feedback Controller.  

Remember however that this has only been accomplished in the previous section for the given C 

matrix .  We can now utilize the following system, derived in Section 3.4, in 

order to find K and L matrices which will asymptotically stabilize the Pendulum on a Cart 

system: 

[ 0001C = ]
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As before we will define the K matrix as: 

 

(4.17)    [ ]4321 kkkkK =

 

We shall define the L matrix as: 
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Thus the system, (4.16), becomes: 
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As mentioned previously the beautiful thing about the form of this matrix is that as an 

upper block triangular matrix it is possible to solve for the L and K matrices separately.  As can 

be seen this is a very important attribute particularly as the dimension of the problem climbs.  

While solving the Simple Inverted Pendulum, a 4x4 system, may not be so bad, solving an 8x8 

system like the Pendulum on a Cart would be very tedious.  The ability to decouple the 

calculations and solve for K and L separately greatly reduces the difficulty of the task. 

 

 It is also important to note that the upper left block of this matrix is exactly the same as 

the matrix from equation 4.8.  That is, solving to find a K matrix that statically stabilizes a 

system is identical to finding a K matrix that dynamically stabilizes the system utilizing observer 

based feedback.  This makes good intuitive sense. The K matrix is always responsible for 

ensuring that the system in question is asymptotically stable to the origin; in the case of static 

feedback the system that is being asymptotically stabilized is the x(t) system; while in the case of 
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observer based dynamic feedback the K matrix is ensuring that the asymptotic estimator is being 

asymptotically stabilized to the origin, thereby ensuring that the x(t) system is also 

asymptotically stabilized to the origin. 

 

 The practical upshot of this observation is that we can utilize the K matrix we derived in 

the previous section, as it will still provide for negative eigenvalues of -1, -1, -1 and -1.  Thus we 

already know that [ MMMMK 8184 ]+= .  This leaves us with only having to find values 

for the L matrix that will provide negative eigenvalues.  To accomplish this we will use the 

familiar pattern of choosing an eigenvalue, 1−=λ , finding the characteristic polynomial for that 

eigenvalue: 

 

(4.20)  1464)1( 2344 ++++=+ λλλλλ

 

then solving for values of li such that the characteristic polynomial of the lower right block of 

matrix 4.19  has an identical form.  

 

The polynomial of the lower right block of matrix 4.19  is: 
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Thus  
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(4.22) 
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Then the resulting system is: 
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By construction this system has an eigenvalue of -1 with a geometric multiplicity of 8.  Thus the 

choices of K and L guarantee that the combined system is asymptotically stable using dynamic 

observer based feedback.  In a practical application the L matrix would be designed with 

eigenvalues of a greater magnitude then the K matrix.  This would allow for a “better” 

asymptotic estimate to be used in the state feedback, by providing the K matrix with as much 

help as possible.   
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Section 4.5:  Static Feedback of the PoC with Constant Disturbance 

  

  What happens to the Pendulum on a Cart system if it is experiencing a constant 

disturbance? Imagine the disturbance is entering the system through the x2 variable, the velocity 

of the pendulum. 

 

The formula for the Pendulum on a Cart with a disturbance entering through x2 is: 
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Remember we have already defined the A and B matrixes, carrying out the matrix algebra we 

find that: 
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Thus it is immediate that x2 = 0 and x4 = 0. 

 

This leaves us with two equations and two unknowns, which we can solve for.  We solve: 
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If we add the two equations together we can solve for x3, and we find that x3 = -d 

Then inserting x3 back into the second equation we get: 

 

(4.27) 
( )

1

3
1

1
k

dkmx
−
−+

=  

 

We assigned values for k1 and k3 in Section 4.2, utilizing the same k values that worked to 

statically stabilize the system without a disturbance is a logical step, inserting those values into 

the above equation we find that x1 = 7d 

 

 This simple set of calculation confirms our initial suspicions.  The Pendulum on a Cart 

system with static feedback will stabilize itself under a constant disturbance but the system will 

not reach a zero equilibrium, rather it will reach a steady state at: 



www.manaraa.com

 73 

 

(4.28)  
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It is interesting to note that the error which entered the system through the pendulums velocity is 

being exhibited as an error in both the pendulum’s and the carts position. 
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Section 4.6:  Dynamic Stabilization of the PoC with Constant Disturbance 

 

We know that we can stabilize the Pendulum on a Cart by utilizing Observer Based 

Dynamic Feedback.  This was proven in Section 4.4.  Since the {A, B} pair is stabilizable, and 

the {C, A} pair is detectable, the Pendulum on a Cart system can be stabilized with Observer 

Based Dynamic Feedback, even with a constant disturbance.   

 

However, is it possible to stabilize the system with a constant disturbance without 

resorting to the full 8x8 system as laid out in that section?  

 

The most obvious starting place is to note that under the influence of a constant 

disturbance the steady state error is found in the x1 and x3 variables.  Thus it is logical to try 

introducing only two auxiliary variables; one for each x1 and x3.  The concept of these auxiliary 

variables is to transpose the physical steady state error from the state variables into the auxiliary 

variables; thus displacing the physical error into our control feedback mechanism.  Since the 

steady state error is seen in the x1 and x3 variables we introduce two associated auxiliary 

variables z1 and z3.  Where: 
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Thus the augmented system would look like: 

 

(4.30) 
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The state space representation of this system is then: 
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Next we use Theorem 2.6, the PBH test for linear stabilizability, to determine if the 

Pendulum on a Cart system with this constant disturbance is stabilizable using linear feedback.  

Remember that the test requires that n]B    IA[Rank =λ−  hold true for every 0)Re( ≥λ  

eigenvalue.  For the above augmented system we have the following eigenvalues: 0, 0, 0, 0, 

M
)1M(M +

 and -
M

)1M(M +
.  Thus we must check to ensure that the rank test holds for both 

the zero and the positive eigenvalue.   

 

For  : 0=λ
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This has a rank of 5.  The 6th row is a linear combination of the 2nd and 4th rows.  Since 

the rank is 5 and the rank of the augmented A matrix is 6, then according to Theorem 2.6, the 

system is not stabilizable utilizing linear feedback.    
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Thus we can not stabilize the system with the reduced dynamic feedback controller we 

have created.  This is not to say that all reduced size dynamic controllers will not work, it is 

conceivable that some other configuration of auxiliary variables will pass the PBH test for linear 

stabilizability.   
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Chapter 5: Further Study 
 

 

The most immediate question left unanswered is if it is possible to stabilize the Inverted 

Pendulum on a Cart system, with a constant disturbance, without resorting to the full 8 x 8 

system.  Since the choices for auxiliary variables, which were utilized in section 4.6, were the 

most logical initial choices further investigations into the problem are required.   

 

Other questions of interest and practical importance deal with the optimality of the 

feedback controller.  How can the system be defined so as to minimize the cost of the controller?  

Depending on the application of the controller various methodologies may be employed, for 

instance by minimizing number of observed state space variables the cost may be reduced. It 

may also be possible that there are different costs associated with observing different variables, 

in which case a linear optimization may be needed to determine which set of variables would 

minimize the overall cost.  On the other hand minimizing the cost of the controller may merely 

be a function of minimizing the time it takes to asymptotically stabilize the system, or even 

minimizing the time during which the system is out of some predefined ‘acceptable’ range 

around the equilibrium. These ideas are examined in linear optimal control theory. 

 

Another topic of interest is determining the “basin of attraction”, D, around the 

equilibrium for which the Jacobian linearization determines the actions of the estimates the 

nonlinear system.  The basin of attraction is the set of initial conditions for the nonlinear system 
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that lead to trajectories that asymptotically converge to the equilibrium.  This idea is examined in 

Lyapanov stability theory for nonlinear systems. 

 

All of these topics can be studied utilizing the examples of the Simple Inverted Pendulum 

and the Inverted Pendulum on a Cart.  Analysis of these topics is left unanswered in this paper 

and are put forth to invite further study on the topic. 
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Appendix A: Summary of Theorems 

 
 
Theorem 2.1 [2, page 43]: 
A system is observable if and only if Wo has full column rank 
 

 

Theorem 2.2 [2, page 20]: 
A system,  is asymptotically stable if and only if all the eigenvalues,Axx = iλ , of A have negative 

real part, that is )Re( iλ  are negative.    

 

 

Theorem 2.3 [4, page 139]: 
Let x = 0 be an equilibrium point for the nonlinear system: 

)(xfx =  

Where f: D       Rn is continuously differentiable and D is a neighborhood of the origin.  Let 

0

)(
=∂

∂
=

x

x
x
fA  

Then,  

3. The origin is asymptotically stable if 0)Re( <iλ for all eigenvalues, iλ , of A. 

4.  The origin is unstable if 0)Re( >iλ for one or more eigenvalues, iλ , of A. 

 

 

Theorem 2.4 [2, page 57] 
The Kalman controllability rank test says that the system BuAxx += is controllable if and only 

if rank Wc := rank[B  AB  A2B  …  An-1B] = n,  where A is an n x n matrix.   
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Theorem 2.5 [2, page 59]: 
The PBH controllability test says that the system BuAxx += is controllable, that is the matrix 

pair {A, B} is controllable, if and only if n B]   λIrank[A =− for all complex eigenvalues λ  of A.  

 

 
Theorem 2.6 [2, page 123] 
The PBH test for linear stabilizability says that the pair {A, B} is stabilizable if and only if 

nBIARank =− ]    [ λ  for every eigenvalue λ  of A with non-negative real part (and thus for 

every complex λ  in the right half plane). 

 

 
Theorem 2.7 [3, page 173] 
Suppose the pair {A, B} from the Jacobian linearization of the system 

)x(gB)x(g
)x(fAx)x(f

1

2

+=
+=

 

 is (asymptotically) stabilizable.  Then any linear feedback which stabilizes the linear 

approximation will also asymptotically stabilize the original nonlinear system, locally.   

If, however the pair {A, B} is not (asymptotically) stabilizable, and has an unstable, 

uncontrollable eigenspace, that is a λ  with 0)Re( >λ  which “fails” the PBH stabilizability 

test, then the original nonlinear system is not (asymptotically) stabilizable by any smooth state 

feedback. 
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Theorem 2.8 (PBH Detectability Test) [2, page 147]: 
The pair {C, A} is detectable if and only if the kernel of      

   ⎥
⎦

⎤
⎢
⎣

⎡ −
=

C
IA λ

Γλ

is the zero subspace, {0}; for every eigenvalue of A where 0)(RE ≥λ . 

 

 
Theorem 3.1 [2, page 145] 
The system: 

Cxy
BuAxx

=
+=

 

is detectable if an asymptotic state estimator exists for the system.  

 

 
Theorem 3.2 [2] 
There exists an observer based dynamic feedback controller for: Cxy     ,BuAxx =+=  

If and only if the pair {A, B} is stabilizable and the pair {C, A} is detectable. 
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